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tained in 86% crude yield.21 After crystallization from chlo-
roform-pentane, treatment of a chloroform solution of 7a with 
2 equiv of 10 N HCl gave 7b HCl, isolable by filtration in 92% 
yield after precipitation from methanol-ether. In analogy to 
the conversion 3c —<• 3d, treatment of tetrapeptide analogue 
7b with aqueous dimethyl sulfide containing Pb(N03)2 gave 
7c in ~40% yield. The identity of the synthetic and authentic 
materials verifies the structural assignment for this component 
of bleomycin.8,22 
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Ammoximation: Direct Synthesis of Oximes 
from Ammonia, Oxygen, and Ketones 

Sir: 

Ketoximes have been prepared by a reaction according to 
the equation 

NH3 + V2O2 + ketone — ketoxime + H2O (1) 

The further oxidation of a mixture of NH3 and an olefin 
(propylene) or an aldehyde (acrolein) to form a nitrile (acry-
lonitrile) is termed ammoxidation. The present process refer­
ring to the synthesis of ketoximes as described by equation 1 
is termed ammoximation. It is well known that cyclohexanone 
oxime can be rearranged to caprolactam in high yields in the 
vapor phase over aluminosilicate catalysts.1 Therefore, a direct 
synthesis of caprolactam could be envisioned for converting 
cyclohexanone, NH3, and air directly into caprolactam by 
placing a reactor for the vapor-phase rearrangement of the 
oxime directly after the ammoximation reactor. 

Oximes are normally prepared by reaction of ketones with 
hydroxylamine. The source of NH2OH is the oxidation of NH3 
to NO (or NO2) followed by reduction with H2 or SO2.

2 The 
formation OfNH2OH from NH3 and O2 has been reported.3'4 

The reactants were passed over a Pt catalyst at low pressures 
and high temperatures (>800 0C). Small amounts OfNH2OH 
and N2O were found as the major products collected in a 
(liquid air) cold trap. While NH2OH is thermally unstable,5-7 

it was felt that scavenging the NH2OH or its precursors with 
ketones to form the more stable oximes would be a much more 
favorable process. However, we have not yet been able to 
identify NH2OH as an intermediate in reaction 1. It is also 
known that oximes can be prepared from ketones, NH3, and 
H2O2 or organic peroxides.8 However, the present synthesis 
is thought not to involve peroxides since addition to the feed 
of a variety of peroxides or of radical inhibitors9 did not in­
fluence the ammoximation reaction. 

Vapor-phase reactions10 were conducted in a borosilicate 
glass tube of ~14-mm o.d. containing a glass frit or plug of 
glass wool to hold the catalyst in place. The reactor was inside 
an electrically heated tube furnace, with concurrent, down-flow 
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feed of reactants. The preparation of oximes of dialkyl, cy-
cloalkyl, and alkaryl ketones was found to be operable in the 
temperature range 60-300 0C. 

As a specific example, NH3-C>2-cyclohexanone were passed 
over a catalyst of 0.8 g of Porasil A, 80-100 mesh (Waters 
Associates, Framingham, Mass.). This material is a very pure, 
porous, amorphous silica gel in the form of silica beads, de­
scribed by the manufacturer as having a pore diameter of 10.0 
nm and a surface area of 350-500 m2/g. The cyclohexanone 
was vaporized in a saturator at a rate of ~0.65 cm3 (as 
vapor)/min into a gas stream of N2 (37 cm3/min) to which 
NH3 (12.0 cm/min) and O2 gas (1.0 cm3/min) were then 
added." The catalyst temperature was maintained at 194 
0C. 

Initially, there was a lag in the production of cyclohexanone 
oxime, after which a selectivity (to oxime)12 of 51%, at 54% 
conversion of the ketone, was obtained (i.e., a yield of oxime 
of 28% of theory based on the cyclohexanone employed). Other 
than unreacted ketone, the oxime is the only product which 
emerges from the reactor. There is no combustion of the ke­
tone. The byproduct(s) remains on the catalyst as an intrac­
table residue(s). The formation of the oxime was confirmed 
by GLC, GC/MS, and the specific, spectrophotometry 
analysis employing p-nitrobenzaldehyde as the indicating re­
agent. 

Reaction 1 has been observed for a wide variety of ketones. 
Ketones which can be used must, of course, be reasonably 
stable at the reaction conditions of temperature, time, and 
catalyst. Ketones which have been demonstrated to give the 
corresponding oxime include acetone, 3-pentanone, cyclo­
hexanone, 2-methylcyclohexanone, and acetophenone. 

The most effective catalysts appear to be porous, amorphous 
silicas and aluminas, especially porous, amorphous silica 
having a surface area in the range of 100-500 m2/g. Trace 
metals are not responsible for catalysis of the reaction since 
the silicas contain <50 ppm of any metal. Yet, the nature of 
the surface is critical since reaction 1 does not proceed in the 
gas phase at <300 0C over quartz chips or within an empty 
reactor. 

While the mechanism of reaction 1 is still unknown, it is not 
believed to involve a radical-chain process based on the results 
obtained upon the addition of peroxides or radical scavengers 
to the feed mixture.9 There are two classes of mechanisms in 
which the nitrogen atoms are oxidized: (a) before bonding to 
carbon and (b) after bonding to carbon. Besides the possible 
formation of hydroxylamine-like precursors (case a), reaction 
1 could also be viewed as proceeding via oxidation of the 
transient imine of cyclohexanone (case b). With regard to the 
ammoxidation process cited earlier, it is interesting to note that 
the traditional catalysts13 for the ammoxidation of olefins to 
nitriles generally function best above 350 0C. A recent paper14 

discussed the oxidation of NH3 in the presence of ketones 
(>350 0C) using bismuth-molybdenum catalysts. There the 
main products were nitriles of lower carbon number. We have 
found that the traditional ammoxidation catalysts13 are poor 
catalysts for ammoximation. We can conclude that the unique 
reaction described by reaction 1 proceeds only if the temper­
ature is low enough to avoid overoxidation of the oxime. Fur­
ther, this unique use of silica as a selective oxidation catalyst 
may explain why others have not observed reaction 1 before. 
Currently, we believe that two parallel reaction pathways, 
perhaps involving different surface sites, lead to oxime and to 
the byproducts. It appears that one site is particularly effective 
toward ammoximation, while the other site is effective for the 
production of byproducts. Since the aldol condensation of 
cyclohexanone has been reported to be catalyzed by oxides, the 
aldolization of cyclohexanone to yield an intractable polymeric 
species (on reaction with NH3) is a possible side reaction from 
reaction I.15 
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Stereoselective Total Synthesis of 
(±)-Perhydrogephyrotoxin. Synthetic Applications of 
Directed 2-Azonia-[3,3]-Sigmatropic Rearrangements 

Sir: 

The gephyrotoxins, a new class of skin alkaloids from poi­
son-dart frogs of the genus Dendrobates, have recently been 
described by Daly, Witkop, and co-workers.1,2 The parent 
alkaloid of this class is gephyrotoxin, which was shown by 
X-ray analysis2 to have the tricyclic perhydropyrrolo[l,2-
a]quinoline structure 1. Also isolated from Dendrobates his-
trionicus is dihydrogephyrotoxin 2, which, together with 1, 
affords perhydrogephyrotoxin 3 upon catalytic hydrogenation.2 

1,R=IZ)-CH=CHCECH 4 , R=CH, 

2 , R= CH = CHCH = CH2 8 , R= CH2OCH2Ph 

3 , R-- CH2CH2CH2CH3 
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